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We iirst note from (13)-(17) and (27)-(29) that
(for given Z) the solutions ¢.(x) and ¢_(x) do not
depenil on v, T, and X\ independently, but only on the
Lo quantities n,, and 6, or from (38) and (13), only on

| oT% and TA (40)

Thus if »; and 77 are some fixed volume (per atom) and
temperature and if » and T are quantities related to
v, and 7 through a scale fuctor ¢ such that

v=¢%, and T=c71}, (41)

then A, may be written
1
A0, )= K[ X9/ (0) =6 (0) Turad ()

=Kot T 0 =0 (0) Jumiad(R)

where A is the constant before the integral sign in
(34). Differentiation of this expression gives

14, 4 2 . )
((dc )u T - —;A°+;1\[¢+ (0) _¢— (0)]1'1.T:-c

4 2. - '
== A+ K[e+'(0)=¢(0) Jorae (42)
But from (36) and (41),

() (50, #6050
de Jor, \ 69 /)o\dc)s,  \OT Ju\dc)r,

— 6§p¢+4~§ g, (43)

and combining this with (42) and (39) gives
pv=5(4et+TS:)—3E,
=3(L— E,)+3Ep (44)

which completes the proof of (37). (In the singular
case T=0, the proof can Be carried out in a manner
entirely analogous to that which has been given for a
modified DHTF theory.*)

3. NUMERICAL METHODS
The differential equations (16) and (28) were inte-
grated numerically with the aid of IBM Type 704
digital computers, using numerical methods similar to
those employed elsewhere.®

a. Integration of the Equation for ¢,

For small x, it may be seen from (15) and (17) that
7.5>1, so that the second term in (16) is negligible
compared with the first, the differential equation thus
reducing to that for the temperature-dependent TF
«tom. The solution can, therefore, be written in series
form:

¢+ (2) =D cws, (43)

the values of the first few coefficients being™

a0=1, a= O,

23

&

a=¢4'(0)=arbitrary,
a;= 2(2-_:/5,

a;=3a*/T0+0(1?).

(1.;=0,
a5=l‘.‘f;

For 27, the ¢; contain temperature-dependent terms,
which however are of no importance provided (43)
is used only o sufliciently small values of .

Using an estimated value of s, integration of (16)
was started with the aid of (43), and then continued
by a difference method. Because of the boundary con-
dition (17), at large x Eq. (16) can be written with the
ald of Taylor series expansions and Eq. (13) in the
form

¢+ (%) =K [ pr—%(4/%)]
¢+(%) =2(p/%) o+ A75+7, (46)

or

whers
K 2=6i[dly(n) /dn+ZL(n) Tp,.  (47)

At some large x, then, the constant A was evaluated
so as to match (46) to the numerical solution, and the
slopes of the two solutions were then compared. The
value of ¢, was then modilied, and an iterative pro-
cedure carried out until the two slopes were equal to
the desired accuracy.

It may easily be seen that this solution of (16)-(17)
is a unique one (barring solutions with singularities
at finite ) : for any integral of (16), the curvature is
positive for ny.>7n,, and negative for 9.<n; if ¢
and ¢, are two integrals satisfying the boundary condi-
tlons at the origin with ¢,"(0) >¢:'(0), then for all =,
o1(%) >¢a(x), & (2)>¢'(v), and ¢"(x)>¢" ().
The solution (which satisfies both boundary condi-
tions) has the properties ¢4 (x) >x0., ¢+ (%) <o,
and ¢.”(x) >0 for all x.

As a check on the integration of the differential
equation, the results were used for a numerical evalua-
tion of the integrul (19); the value of ¢ thus obtained
was generally equal to —MZe within one-uwentieth
percent, except at large Z and low ¢ where the function
(18) changes very rapidly with x.

b. Integration of the Equation for ¢..

With %4+ being a known function from the solution of
(16)-(17), the integration of (28) can be carried out
in a similar manner. At small x, <0 from (27) and
(29), and (28) reduces to

¢-" () = =§($)*05 L3 (ns) (48)

which is identical with the small-x form of (16) except

1 Reference 5, Sec. II.




